Working of FlatMap in PySpark | Examples - EDUCBA
www.educba.com › pyspark-flatmapPySpark FlatMap is a transformation operation in PySpark RDD/Data frame model that is used function over each and every element in the PySpark data model. It is applied to each element of RDD and the return is a new RDD. This transformation function takes all the elements from the RDD and applies custom business logic to elements.
How to use the Pyspark flatMap() function in Python?
www.pythonpool.com › python-flatmapApr 28, 2021 · What is flatMap() function? The flatMap() function PySpark module is the transformation operation used for flattening the Dataframes/RDD(array/map DataFrame columns) after applying the function on every element and returns a new PySpark RDD/DataFrame. Syntax RDD.flatMap(f, preservesPartitioning=False) Example of Python flatMap() function
PySpark - flatMap() - myTechMint
www.mytechmint.com › pyspark-flatmapOct 5, 2022 · PySpark flatMap () is a transformation operation that flattens the RDD/DataFrame (array/map DataFrame columns) after applying the function on every element and returns a new PySpark RDD/DataFrame. In this article, you will learn the syntax and usage of the PySpark flatMap () with an example. First, let’s create an RDD from the list.
apache spark - Flatmap a collect_set in pyspark dataframe ...
stackoverflow.com › questions › 41614364Jan 12, 2017 · Flatmap a collect_set in pyspark dataframe. I have two dataframe and I'm using collect_set () in agg after using groupby. What's the best way to flatMap the resulting array after aggregating. schema = ['col1', 'col2', 'col3', 'col4'] a = [ [1, [23, 32], [11, 22], [9989]]] df1 = spark.createDataFrame (a, schema=schema) b = [ [1, [34], [43, 22], [888, 777]]] df2 = spark.createDataFrame (b, schema=schema) df = df1.union ( df2 ).groupby ( 'col1' ).agg ( collect_set ('col2').alias ('col2'), ...