Working of FlatMap in PySpark | Examples - EDUCBA
www.educba.com › pyspark-flatmapPySpark FlatMap is a transformation operation in PySpark RDD/Data frame model that is used function over each and every element in the PySpark data model. It is applied to each element of RDD and the return is a new RDD. This transformation function takes all the elements from the RDD and applies custom business logic to elements.
apache spark - Flatmap a collect_set in pyspark dataframe ...
stackoverflow.com › questions › 41614364Jan 12, 2017 · Flatmap a collect_set in pyspark dataframe. I have two dataframe and I'm using collect_set () in agg after using groupby. What's the best way to flatMap the resulting array after aggregating. schema = ['col1', 'col2', 'col3', 'col4'] a = [ [1, [23, 32], [11, 22], [9989]]] df1 = spark.createDataFrame (a, schema=schema) b = [ [1, [34], [43, 22], [888, 777]]] df2 = spark.createDataFrame (b, schema=schema) df = df1.union ( df2 ).groupby ( 'col1' ).agg ( collect_set ('col2').alias ('col2'), ...
PySpark - flatMap() - myTechMint
www.mytechmint.com › pyspark-flatmapOct 5, 2022 · PySpark flatMap () is a transformation operation that flattens the RDD/DataFrame (array/map DataFrame columns) after applying the function on every element and returns a new PySpark RDD/DataFrame. In this article, you will learn the syntax and usage of the PySpark flatMap () with an example. First, let’s create an RDD from the list.
How to use the Pyspark flatMap() function in Python?
www.pythonpool.com › python-flatmapApr 28, 2021 · What is flatMap() function? The flatMap() function PySpark module is the transformation operation used for flattening the Dataframes/RDD(array/map DataFrame columns) after applying the function on every element and returns a new PySpark RDD/DataFrame. Syntax RDD.flatMap(f, preservesPartitioning=False) Example of Python flatMap() function